
12/17/2008

1

Exceptions

Lecture 15

Object-Oriented Programming

Lecture 15 Object-Oriented Programming 2

Definition

• An exception represents an error condition

that can occur during the normal course of

program execution.

• When an exception occurs, or is thrown,

the normal sequence of flow is terminated.

The exception-handling routine is then

executed; we say the thrown exception is

caught.

12/17/2008

2

Lecture 15 Object-Oriented Programming 3

Not Catching Exceptions

String inputStr;

int age;

inputStr = JOptionPane.showInputDialog(null, "Age:");

age = Integer.parseInt(inputStr);

java.lang.NumberFormatException: ten

at java.lang.Integer.parseInt(Integer.java:405)

at java.lang.Integer.parseInt(Integer.java:454)

at Ch8Sample1.main(Ch8Sample1.java:20)

Error message for invalid input

Lecture 15 Object-Oriented Programming 4

Exceptions in Java

• Process for handling exceptions
– try some code

– catch exception thrown by tried code

– finally, clean up if necessary

– try, catch, and finally are reserved words

• try denotes code that may throw exception
– place questionable code within a try block

– a try block must be immediately followed by a catch
block.

– A catch block must be preceded by a try block

12/17/2008

3

Lecture 15 Object-Oriented Programming 5

Exceptions in Java

• catch exception thrown in try block and write special
code to handle it
– catch blocks distinguished by type of exception

– can have several catch blocks, each specifying a particular type
of exception possibly thrown in try block

– once exception is handled, execution continues after the catch
block in caller

• finally (optional)
– special block of code that is executed whether or not exception

is thrown

– follows catch block

Lecture 15 Object-Oriented Programming 6

Try catch Block

• try block enclosed in curly braces {}

• catch block mirrors method definition
– takes exception as formal parameter

• catch block based on type of exception parameter it
handles
– most specific exception type in an exception hierarchy must

lexically come first
– formal parameter of type java.lang.Exception is the most

general and would catch any subclass from the exception library

12/17/2008

4

Lecture 15 Object-Oriented Programming 7

Try catch Block Syntax

• Here’s the basic syntax (typically in sender):

try {

<code>

}

catch (most_specific_exception_type name) {

<code in response to exception>

}

catch (more_general_exception_type name) {

<code in response to exception>

}

...

finally { <code> }

Lecture 15 Object-Oriented Programming 8

Catching an Exception

inputStr = JOptionPane.showInputDialog(null, "Age:");

try {

age = Integer.parseInt(inputStr);

} catch (NumberFormatException e){

JOptionPane.showMessageDialog(null, "’" + inputStr

+ "‘ is invalid\n"

+ "Please enter digits only");

}

try

catch

12/17/2008

5

Lecture 15 Object-Oriented Programming 9

try-catch Control Flow

Lecture 15 Object-Oriented Programming 10

Getting Information

• There are two methods we can call to

get information about the thrown

exception:

– getMessage

– printStackTrace

try {

. . .

} catch (NumberFormatException e){

System.out.println(e.getMessage());

System.out.println(e.printStackTrace());

}

12/17/2008

6

Lecture 15 Object-Oriented Programming 11

Multiple catch Blocks
• A single try-catch statement can include multiple

catch blocks, one for each type of exception.

try {

. . .

age = Integer.parseInt(inputStr);

. . .

val = cal.get(id); //cal is a GregorianCalendar

. . .

} catch (NumberFormatException e){

. . .

} catch (ArrayIndexOutOfBoundsException e){

. . .

}

Lecture 15 Object-Oriented Programming 12

Multiple catch Control Flow

12/17/2008

7

Lecture 15 Object-Oriented Programming 13

The finally Block

• There are situations where we need to

take certain actions regardless of whether

an exception is thrown or not.

• We place statements that must be

executed regardless of exceptions in the

finally block.

Lecture 15 Object-Oriented Programming 14

try-catch-finally Control Flow

12/17/2008

8

Lecture 15 Object-Oriented Programming 15

Propagating Exceptions

• Instead of catching a thrown exception by
using the try-catch statement, we can
propagate the thrown exception back to the
caller of our method.

• The method header includes the reserved word
throws.

public int getAge() throws NumberFormatException {

. . .

int age = Integer.parseInt(inputStr);

. . .

return age;

}

Lecture 15 Object-Oriented Programming 16

Throwing Exceptions
• We can write a method that throws an

exception directly, i.e., this method is the origin
of the exception.

• Use the throw reserved to create a new
instance of the Exception or its subclasses.

• The method header includes the reserved word
throws.

public void doWork(int num) throws Exception {

. . .

if (num != val) throw new Exception("Invalid val");

. . .

}

12/17/2008

9

Lecture 15 Object-Oriented Programming 17

Exception Thrower

• When a method may throw an exception,

either directly or indirectly, we call the

method an exception thrower.

• Every exception thrower must be one of

two types:
– catcher.

– propagator.

Lecture 15 Object-Oriented Programming 18

Types of Exception Throwers

• An exception catcher is an exception

thrower that includes a matching catch

block for the thrown exception.

• An exception propagator does not

contain a matching catch block.

• A method may be a catcher of one

exception and a propagator of another.

12/17/2008

10

Lecture 15 Object-Oriented Programming 19

Sample Call Sequence

Lecture 15 Object-Oriented Programming 20

Exception Types

• All types of thrown errors are instances of

the Throwable class or its subclasses.

• Serious errors are represented by instances of
the Error class or its subclasses.

• Exceptional cases that common applications
should handle are represented by instances of
the Exception class or its subclasses.

12/17/2008

11

Lecture 15 Object-Oriented Programming 21

Throwable Hierarchy
• There are over 60 classes in the hierarchy.

Lecture 15 Object-Oriented Programming 22

Checked vs. Runtime

• There are two types of exceptions:
– Checked.

– Unchecked.

• A checked exception is an exception that

is checked at compile time.

• All other exceptions are unchecked, or

runtime, exceptions. As the name

suggests, they are detected only at

runtime.

12/17/2008

12

Lecture 15 Object-Oriented Programming 23

Different Handling Rules

• When calling a method that can throw
checked exceptions
– use the try-catch statement and place the

call in the try block, or

– modify the method header to include the
appropriate throws clause.

• When calling a method that can throw
runtime exceptions, it is optional to use
the try-catch statement or modify the
method header to include a throws
clause.

Lecture 15 Object-Oriented Programming 24

Handling Checked Exceptions

12/17/2008

13

Lecture 15 Object-Oriented Programming 25

Handling Runtime Exceptions

Lecture 15 Object-Oriented Programming 26

Programmer-Defined

Exceptions

• Using the standard exception classes, we can use

the getMessage method to retrieve the error

message.

• By defining our own exception class, we can pack

more useful information

– for example, we may define a OutOfStock exception class

and include information such as how many items to order

• AgeInputException is defined as a subclass of

Exception and includes public methods to access

three pieces of information it carries: lower and upper

bounds of valid age input and the (invalid) value

entered by the user.

12/17/2008

14

Lecture 15 Object-Oriented Programming 27

• These slides are developed wholly by C

Thomas Wu of Naval Postgraduate

College. They are used in this course with

minor modifications under Creative

Commons License.

