Exceptions

Lecture 15
Object-Oriented Programming

Definition

» An exception represents an error condition
that can occur during the normal course of
program execution.

* When an exception occurs, or is thrown,
the normal sequence of flow is terminated.
The exception-handling routine is then
executed; we say the thrown exception is
caught.
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Not Catching Exceptions

String inputStr;

int age;

inputStr = JOptionPane.showInputDialog(null, )

age Integer.parselnt (inputStr);

Error message for invalid input

java.lang.NumberFormatException: ten
at java.lang.Integer.parselnt (Integer.java:405)
at java.lang.Integer.parselnt (Integer.java:454)
at Ch8Samplel.main (Ch8Samplel. java:20)
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Exceptions in Java

» Process for handling exceptions
— try some code
— catch exception thrown by tried code
— finally, clean up if necessary
— try, catch, and finally are reserved words
« try denotes code that may throw exception
— place questionable code within a try block

— a try block must be immediately followed by a catch
block.

— A catch block must be preceded by a try block
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Exceptions in Java

- catch exception thrown in try block and write special
code to handle it
— catch blocks distinguished by type of exception

— can have several catch blocks, each specifying a particular type
of exception possibly thrown in try block

— once exception is handled, execution continues after the catch
block in caller

. finally (optional)

— special block of code that is executed whether or not exception
is thrown

— follows catch block
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Try catch Block

- try block enclosed in curly braces {}

- catch block mirrors method definition
— takes exception as formal parameter

- catch block based on type of exception parameter it
handles

— most specific exception type in an exception hierarchy must
lexically come first

— formal parameter of type java.lang.Exception is the most
general and would catch any subclass from the exception library
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Try catch Block Syntax

» Here’s the basic syntax (typically in sender):

try {
<code>

}

catch (most_specific exception_type name) {
<code in response to exception>

}

catch (more general exception_type name) {
<code in response to exception>

}

finally { <code> }
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Catching an Exception

inputStr = JOptionPane.showInputDialog(null, ) ;
- try {
J[ry age = Integer.parselnt (inputStr);

™~ } catch (NumberFormatException e) {

N
(]

JOptionPane.showMessageDialog(null, + inputStr
catch
+
L + )i
~ !
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try-catch Control Flow

Exception

Assume <t-stmt-3> throws an

try {
) <t-stmt-1=
«t-stmt-2>
Y <t-stmt-3>
(A s e

<t-stmt-n>

exception

This part is
skipped.

.} catch (Exception e) {

<c-stmbt-1=

Y <c-stmt-n>

}

<next stmt=>
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No Exception

try {

1 <t-stmt-1>
<t-stmt-2>
<t-stmt-3=>
<t-stmt-4=>

Y <t-stmt n>

} catch (Exception e) {
<c-stmtbt-1>

<C-stmt-n=

<next stmt>

Getting Information

* There are two methods we can call to
get information about the thrown

exception:

— getMessage
— printStackTrace

try |

} catch (NumberFormatException e) {

System.out.println (e.getMessage());

System.out.println (e.printStackTrace());
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Multiple catch Blocks

» A single try-catch statement can include multiple
catch blocks, one for each type of exception.

try {
age = Integer.parselnt (inputStr);
val = cal.get(id); //cal is a GregorianCalendar

} catch (NumberFormatException e) {

} catch (ArrayIndexOutOfBoundsException e) {

}
oo T < gre g 1
Multiple catch Control Flow
Exception No Exception
Assume <t-stmt-3> throws an and
<catch-block-3> is the matching catch block.
try { try {
] <t-stmt-1> ] <t-stmt-1>
<t-stmt-2> <t-stmt-2>
! <t-stmt=-3> <t=-stmt=-3>
<t-stmt-4> <t-stmt-4>
<t-stmt-n> ¥ <t-stmt-n>
} A1
<catch-block-1> ; <catch-block-1x>
._<catch-block-2> ! <catch-block-2>
<catch-block-3> ' <catch-block-3>
*" <catch-block-4> ' <catch-block-4>
<catch-block-n> . <catch-block-n>
<next stmts .'cnex: stmt>
Lecture 15 Y L 12
Skipped portion




The finally Block

» There are situations where we need to
take certain actions regardless of whether
an exception is thrown or not.

» We place statements that must be
executed regardless of exceptions in the
finally block.
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try-catch-finally Control Flow

Exception No Exception
Assume <t-stmt-i> throws an exception and
<catch-block-i> is the matching catch block.
try { votry {
<t-stmt-1> <t-stmt-1>
<t-stmt-i> <t-stmt-i>
<t-stmt-n= J <t-stmt-n>
} Al
<catch-block-1> <catch-block-1>
| ccatch-block-i> ' <catch-block-i>
<catch-bleck-n> <catch-block-n>
finally { finally {
} }
Y<next statements <next statements
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Propagating Exceptions

* Instead of catching a thrown exception by
using the try-catch statement, we can
propagate the thrown exception back to the
caller of our method.

 The method header includes the reserved word

throws.
public int getAge( ) throws NumberFormatException {
int age = Integer.parselnt (inputStr);

return age;

Throwing Exceptions

» We can write a method that throws an
exception directly, i.e., this method is the origin
of the exception.

» Use the throw reserved to create a new
instance of the Exception or its subclasses.

* The method header includes the reserved word
throws.

public void doWork (int num) throws Exception {

if (num != val) throw new Exception( )




Exception Thrower

* When a method may throw an exception,
either directly or indirectly, we call the
method an exception thrower.

» Every exception thrower must be one of
two types:
— catcher.
— propagator.
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Types of Exception Throwers

» An exception catcheris an exception
thrower that includes a matching catch
block for the thrown exception.

» An exception propagator does not
contain a matching catch block.

« A method may be a catcher of one
exception and a propagator of another.
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Sample Call Sequence

Method A Method B . Method C Method I»
- T I
try Ty
13 Di): if (comd) {
catch (Excep tien L. sptien e) throw
ut tln ut println(*E*) ; new Exceptioni) :
1,
3

Call Sequence
Method A Method B Method C Method I»
: \__ ___/,/ ropagator ‘\_H____ ___’/ Ry
Stack Trace
D
C C
= B B B
A A ‘\\ / A \\ 3 A
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Exception Types

« All types of thrown errors are instances of
the Throwable class or its subclasses.

» Serious errors are represented by instances of
the Error class or its subclasses.

» Exceptional cases that common applications
should handle are represented by instances of
the Exception class or its subclasses.
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Throwable Hierarchy
» There are over 60 classes in the hierarchy.

‘ Throwable |
AN
’—‘P -
‘ Error | ‘ Exception |
\ /\\
‘ AssertionError | ‘ RuntimeException | [ [OException |
Ly IR EX

| | |

‘ ArithmeticException | ‘[llcgaIArgumenlExccplion| ‘ NullPointerException |

Le ‘ NumberFormatException |

Checked vs. Runtime

» There are two types of exceptions:
— Checked.
— Unchecked.

» A checked exception is an exception that
is checked at compile time.

 All other exceptions are unchecked, or
runtime, exceptions. As the name
suggests, they are detected only at
runtime.
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Different Handling Rules

« When calling a method that can throw
checked exceptions
— use the try-catch statement and place the
call in the try block, or

— modify the method header to include the
appropriate throws clause.

« When calling a method that can throw
runtime exceptions, it is optional to use
the try-catch statement or modify the

e ENETNOA heagderin.ingliide a throws 2
clause.

Handling Checked Exceptions

Caller A (Catcher)

void calleraA({ ) {

try { ; ; .
dowWork ( ) ; doWork throws Exception

} catch (Exception e) { public void doWork

throws Exception {

Caller B (Propagator) ) =2t

void callerB( )

throw new Excepticon();

throws Exception {

doWork( );

12/17/2008

12



12/17/2008

Handling Runtime Exceptions

Caller A (Catcher)

void callern( )} {
try {
doWork{ }; -
} eateh ( g
RuntimeException e) { doWork throws RuntimeException
}” | public void doWork {
throw new
Caller B (Propagator) ; RuntimeException() ;
1
i

doWork( );

Caller C (Propagator)

void callerc( ) { /
i This is the most common
doWork( }; — style for runtime exceptions.
i Motice that Caller Cisa

} propagator implicitly.
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Programmer-Defined
Exceptions

» Using the standard exception classes, we can use
the getMessage method to retrieve the error
message.

» By defining our own exception class, we can pack
more useful information
— for example, we may define a OutOfStock exception class

and include information such as how many items to order

» AgelnputException is defined as a subclass of
Exception and includes public methods to access
three pieces of information it carries: lower and upper
bounds of valid age input and the (invalid) value

entered by the user.
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» These slides are developed wholly by C
Thomas Wu of Naval Postgraduate

College. They are used in this course with

minor modifications under Creative
Commons License.
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