Exceptions

Lecture 15
Object-Oriented Programming

Definition

» An exception represents an error condition
that can occur during the normal course of
program execution.

* When an exception occurs, or is thrown,
the normal sequence of flow is terminated.
The exception-handling routine is then
executed; we say the thrown exception is
caught.

Lecture 15 Object-Oriented Programming 2

12/17/2008

12/17/2008

Not Catching Exceptions

String inputStr;

int age;

inputStr = JOptionPane.showInputDialog(null,)

age Integer.parselnt (inputStr);

Error message for invalid input

java.lang.NumberFormatException: ten
at java.lang.Integer.parselnt (Integer.java:405)
at java.lang.Integer.parselnt (Integer.java:454)
at Ch8Samplel.main (Ch8Samplel. java:20)

Lecture 15 Object-Oriented Programming 3

Exceptions in Java

» Process for handling exceptions
— try some code
— catch exception thrown by tried code
— finally, clean up if necessary
— try, catch, and finally are reserved words
« try denotes code that may throw exception
— place questionable code within a try block

— a try block must be immediately followed by a catch
block.

— A catch block must be preceded by a try block

Lecture 15 Object-Oriented Programming 4

Exceptions in Java

- catch exception thrown in try block and write special
code to handle it
— catch blocks distinguished by type of exception

— can have several catch blocks, each specifying a particular type
of exception possibly thrown in try block

— once exception is handled, execution continues after the catch
block in caller

. finally (optional)

— special block of code that is executed whether or not exception
is thrown

— follows catch block

Lecture 15 Object-Oriented Programming

Try catch Block

- try block enclosed in curly braces {}

- catch block mirrors method definition
— takes exception as formal parameter

- catch block based on type of exception parameter it
handles

— most specific exception type in an exception hierarchy must
lexically come first

— formal parameter of type java.lang.Exception is the most
general and would catch any subclass from the exception library

Lecture 15 Object-Oriented Programming

12/17/2008

12/17/2008

Try catch Block Syntax

» Here’s the basic syntax (typically in sender):

try {
<code>

}

catch (most_specific exception_type name) {
<code in response to exception>

}

catch (more general exception_type name) {
<code in response to exception>

}

finally { <code> }

Lecture 15 Object-Oriented Programming 7

Catching an Exception

inputStr = JOptionPane.showInputDialog(null,) ;
- try {
J[ry age = Integer.parselnt (inputStr);

™~ } catch (NumberFormatException e) {

N
(]

JOptionPane.showMessageDialog(null, + inputStr
catch
+
L +)i
~ !
Lecture 15 Object-Oriented Programming 8

try-catch Control Flow

Exception

Assume <t-stmt-3> throws an

try {
) <t-stmt-1=
«t-stmt-2>
Y <t-stmt-3>
(A s e

<t-stmt-n>

exception

This part is
skipped.

.} catch (Exception e) {

<c-stmbt-1=

Y <c-stmt-n>

}

<next stmt=>

Lecture 15

.

Object-Oriented Programming

No Exception

try {

1 <t-stmt-1>
<t-stmt-2>
<t-stmt-3=>
<t-stmt-4=>

Y <t-stmt n>

} catch (Exception e) {
<c-stmtbt-1>

<C-stmt-n=

<next stmt>

Getting Information

* There are two methods we can call to
get information about the thrown

exception:

— getMessage
— printStackTrace

try |

} catch (NumberFormatException e) {

System.out.println (e.getMessage());

System.out.println (e.printStackTrace());

12/17/2008

12/17/2008

Multiple catch Blocks

» A single try-catch statement can include multiple
catch blocks, one for each type of exception.

try {
age = Integer.parselnt (inputStr);
val = cal.get(id); //cal is a GregorianCalendar

} catch (NumberFormatException e) {

} catch (ArrayIndexOutOfBoundsException e) {

}
oo T < gre g 1
Multiple catch Control Flow
Exception No Exception
Assume <t-stmt-3> throws an and
<catch-block-3> is the matching catch block.
try { try {
] <t-stmt-1>] <t-stmt-1>
<t-stmt-2> <t-stmt-2>
! <t-stmt=-3> <t=-stmt=-3>
<t-stmt-4> <t-stmt-4>
<t-stmt-n> ¥ <t-stmt-n>
} A1
<catch-block-1> ; <catch-block-1x>
._<catch-block-2> ! <catch-block-2>
<catch-block-3> ' <catch-block-3>
*" <catch-block-4> ' <catch-block-4>
<catch-block-n> . <catch-block-n>
<next stmts .'cnex: stmt>
Lecture 15 Y L 12
Skipped portion

The finally Block

» There are situations where we need to
take certain actions regardless of whether
an exception is thrown or not.

» We place statements that must be
executed regardless of exceptions in the
finally block.

Lecture 15 Object-Oriented Programming 13

try-catch-finally Control Flow

Exception No Exception
Assume <t-stmt-i> throws an exception and
<catch-block-i> is the matching catch block.
try { votry {
<t-stmt-1> <t-stmt-1>
<t-stmt-i> <t-stmt-i>
<t-stmt-n= J <t-stmt-n>
} Al
<catch-block-1> <catch-block-1>
| ccatch-block-i> ' <catch-block-i>
<catch-bleck-n> <catch-block-n>
finally { finally {
} }
Y<next statements <next statements
Lecture 1 . . 14
Skipped portion

12/17/2008

12/17/2008

Propagating Exceptions

* Instead of catching a thrown exception by
using the try-catch statement, we can
propagate the thrown exception back to the
caller of our method.

 The method header includes the reserved word

throws.
public int getAge() throws NumberFormatException {
int age = Integer.parselnt (inputStr);

return age;

Throwing Exceptions

» We can write a method that throws an
exception directly, i.e., this method is the origin
of the exception.

» Use the throw reserved to create a new
instance of the Exception or its subclasses.

* The method header includes the reserved word
throws.

public void doWork (int num) throws Exception {

if (num != val) throw new Exception()

Exception Thrower

* When a method may throw an exception,
either directly or indirectly, we call the
method an exception thrower.

» Every exception thrower must be one of
two types:
— catcher.
— propagator.

Lecture 15 Object-Oriented Programming 17

Types of Exception Throwers

» An exception catcheris an exception
thrower that includes a matching catch
block for the thrown exception.

» An exception propagator does not
contain a matching catch block.

« A method may be a catcher of one
exception and a propagator of another.

Lecture 15 Object-Oriented Programming 18

12/17/2008

Sample Call Sequence

Method A Method B . Method C Method I»
- T I
try Ty
13 Di): if (comd) {
catch (Excep tien L. sptien e) throw
ut tln ut println(*E*) ; new Exceptioni) :
1,
3

Call Sequence
Method A Method B Method C Method I»
: __ ___/,/ ropagator ‘_H____ ___’/ Ry
Stack Trace
D
C C
= B B B
A A ‘\\ / A \\ 3 A
Lecture 15 Object-Oriented Programming 19

Exception Types

« All types of thrown errors are instances of
the Throwable class or its subclasses.

» Serious errors are represented by instances of
the Error class or its subclasses.

» Exceptional cases that common applications
should handle are represented by instances of
the Exception class or its subclasses.

Lecture 15 Object-Oriented Programming 20

12/17/2008

10

Throwable Hierarchy
» There are over 60 classes in the hierarchy.

‘ Throwable |
AN
’—‘P -
‘ Error | ‘ Exception |
\ /\\
‘ AssertionError | ‘ RuntimeException | [[OException |
Ly IR EX

| | |

‘ ArithmeticException | ‘[llcgaIArgumenlExccplion| ‘ NullPointerException |

Le ‘ NumberFormatException |

Checked vs. Runtime

» There are two types of exceptions:
— Checked.
— Unchecked.

» A checked exception is an exception that
is checked at compile time.

 All other exceptions are unchecked, or
runtime, exceptions. As the name
suggests, they are detected only at
runtime.

Lecture 15 Object-Oriented Programming 22

12/17/2008

11

Different Handling Rules

« When calling a method that can throw
checked exceptions
— use the try-catch statement and place the
call in the try block, or

— modify the method header to include the
appropriate throws clause.

« When calling a method that can throw
runtime exceptions, it is optional to use
the try-catch statement or modify the

e ENETNOA heagderin.ingliide a throws 2
clause.

Handling Checked Exceptions

Caller A (Catcher)

void calleraA({) {

try { ; ; .
dowWork () ; doWork throws Exception

} catch (Exception e) { public void doWork

throws Exception {

Caller B (Propagator)) =2t

void callerB()

throw new Excepticon();

throws Exception {

doWork();

12/17/2008

12

12/17/2008

Handling Runtime Exceptions

Caller A (Catcher)

void callern()} {
try {
doWork{ }; -
} eateh (g
RuntimeException e) { doWork throws RuntimeException
}” | public void doWork {
throw new
Caller B (Propagator) ; RuntimeException() ;
1
i

doWork();

Caller C (Propagator)

void callerc() { /
i This is the most common
doWork(}; — style for runtime exceptions.
i Motice that Caller Cisa

} propagator implicitly.

Lecture 1 25
Programmer-Defined
Exceptions

» Using the standard exception classes, we can use
the getMessage method to retrieve the error
message.

» By defining our own exception class, we can pack
more useful information
— for example, we may define a OutOfStock exception class

and include information such as how many items to order

» AgelnputException is defined as a subclass of
Exception and includes public methods to access
three pieces of information it carries: lower and upper
bounds of valid age input and the (invalid) value

entered by the user.
Lecture 15 Object-Oriented Programming 26

13

» These slides are developed wholly by C
Thomas Wu of Naval Postgraduate

College. They are used in this course with

minor modifications under Creative
Commons License.

Lecture 15 Object-Oriented Programming

27

12/17/2008

14

